

Towards the Development of a Compact Tension Sensing Unit for Tendon Actuation Systems HeaRT Laboratory Healthcare Robotics and Telesurgery Laboratory

PRATT SCHOOL of ENGINEERING

LOUISVILLE AUTOMATION & ROBOTICS RESEARCH INSTITUTE

Introduction

- Tendon actuated robots face many challenges
 - Friction related model errors
 - Tendon elongation
- The Solution
 - Integrate tendon tension sensing for closed loop feedback
 - Compact Tendon Sensing Unit (CTSU) inspired by [1] & [2]

Design & Integration

Figure 1. (a) CTSU Design Top View, (b) CTSU Design Isometric View, (c) Sensing Unit Integration into Tendon Actuation System

Compared to [2], from 25x30x20mm (*LxWxH*) to 23.45x17.50x8.39mm

Patrick Zheng^a, Kent K. Yamamoto^{a,b}, Y. Chitalia^b, P.J. Codd^a ^aBrain Tool Lab, Duke University, Durham, NC ^bHeaRT Lab, University of Louisville, Louisville, KY

Methods

Figure 2. Geometric modeling scheme for CTSU

 $2\sin(2\gamma)$

 T_T is tendon tension F_T is force sensor output

Experimental Setup

Figure 3. Proposed experimental setup combining CTSU, load cell, and pulley mechanism for attaching weights

Incremented weight attached to pulley in 50g intervals up to 500g Compared to load cell readings

Results

Future Work

- Modify design to resolve stick-slip phenomenon
- Integrate into handheld actuation system

Contact

Patrick Zheng pz65@duke.edu

Duke ECE/CS Undergraduate Student

References

[1] Tran P, Elliott D, Herrin K, Bhatia S, Desai JP. Evaluation of the FLEXotendon glove-III through a human subject case study. Biomed Eng Lett. 2023 Jan 27;13(2):153-163. doi: 10.1007/s13534-023-00262-2. PMID: 37124112; PMCID: PMC10130284.

[2] K.K. Yamamoto, T. J. Zachem, P. Kheradmand, P. Zheng, J. Abdelgadir, J.L. Bailey, K. Pieter, P.J. Codd, Y. Chitalia, "Tendon-Actuated Concentric Tube Endonasal Robot (TACTER)", doi: https://doi.org/10.48550/arXiv.2504.19948

